This is a draft cheat sheet. It is a work in progress and is not finished yet.
                    
        
                
        
            
                                
            
                
                                                
                                
    
    
            Trigonometric Identities
        
                        
                                                                                    
                                                                                            Reciprocal Trigonometric Identities  | 
                                                                                 
                                                                                            
                                                                                            Sin θ = 1/Csc θ or Csc θ = 1/Sin θ  | 
                                                                                 
                                                                                            
                                                                                            Cos θ = 1/Sec θ or Sec θ = 1/Cos θ  | 
                                                                                 
                                                                                            
                                                                                            Tan θ = 1/Cot θ or Cot θ = 1/Tan θ  | 
                                                                                 
                                                                                            
                                                                                            Pythagorean Trigonometric Identities  | 
                                                                                 
                                                                                            
                                                                                            sin2 a + cos2 a = 1  | 
                                                                                 
                                                                                            
                                                                                            1+tan2 a  = sec2 a  | 
                                                                                 
                                                                                            
                                                                                            cosec2 a = 1 + cot2 a  | 
                                                                                 
                                                                                            
                                                                                            Ratio Trigonometric Identities  | 
                                                                                 
                                                                                            
                                                                                            Tan θ = Sin θ/Cos θ  | 
                                                                                 
                                                                                            
                                                                                            Cot θ = Cos θ/Sin θ  | 
                                                                                 
                                                                                            
                                                                                            Sum and Difference of Angles Trigonometric Identities  | 
                                                                                 
                                                                                            
                                                                                            sin(α+β)=sin(α).cos(β)+cos(α).sin(β)  | 
                                                                                 
                                                                                            
                                                                                            sin(α–β)=sinα.cosβ–cosα.sinβ  | 
                                                                                 
                                                                                            
                                                                                            cos(α+β)=cosα.cosβ–sinα.sinβ  | 
                                                                                 
                                                                                            
                                                                                            cos(α–β)=cosα.cosβ+sinα.sinβ  | 
                                                                                 
                                                                         
                             
    
    
            Derivation Formula
        
                        
                                                                                    
                                                                                            Product Rule  | 
                                                                                 
                                                                                            
                                                                                            (d/dx) (fg)= fg’ + gf’  | 
                                                                                 
                                                                                            
                                                                                            Quotient Rule  | 
                                                                                 
                                                                                            
                                                                                            (d/dx) (f/g) = gf'-fg'/g2  | 
                                                                                 
                                                                                            
                                                                                            Chain Rule  | 
                                                                                 
                                                                                            
                                                                                            y = f(g(x)), then y' = f'(g(x)). g'(x)  | 
                                                                                 
                                                                         
                             
                             | 
                                                                              | 
                                                        
                                
    
    
            Derivatives of Trigonometric Functions
        
                        
                                                                                    
                                                                                            If f( x) = sin x, then f′( x) = cos x  | 
                                                                                 
                                                                                            
                                                                                            If f( x) = cos x, then f′( x) = −sin x  | 
                                                                                 
                                                                                            
                                                                                            If f( x) = tan x, then f′( x) = sec 2 x  | 
                                                                                 
                                                                                            
                                                                                            If f( x) = cot x, then f′( x) = −csc 2 x.  | 
                                                                                 
                                                                                            
                                                                                            If f( x) = sec x, then f′( x) = sec x tan x  | 
                                                                                 
                                                                                            
                                                                                            If f( x) = csc x, then f′( x) = −csc x cot x  | 
                                                                                 
                                                                         
                             
    
    
    
    
            Examples
        
                        
                                                                                    
                                                                                            g ( x ) = 3 sec ( x ) − 10 cot ( x )  | 
                                                                                 
                                                                         
                             
                             | 
                                                                              | 
                                                        
                                
    
    
    
    
            Derivative of sec x
        
                        
                                    
                        We will determine the derivative of sec x using the chain rule. We will use the following formulas and identities to calculate the derivative: 
 
sec x = 1/cos x 
tan x = sin x/cos x 
(cos x)' = -sin x 
(sec x)' = (1/cos x)' = (-1/cos2x).(cos x)' 
 
= (-1/cos2x).(-sin x) 
 
= sin x/cos2x 
 
= (sin x/cos x).(1/cos x) 
 
= tan x sec x 
 
Therefore, d(sec x)/dx = tan x sec x  | 
                     
                             
                             
                             | 
                                                                              | 
                                                        
                                
    
    
            Derivative of cot x
        
                        
                                    
                        We will determine the derivative of cot x using the quotient rule. We will use the following formulas and identities to calculate the derivative: 
 
(sin x)' = cos x 
(cos x)' = -sin x 
cot x = cos x/ sin x 
cos2x + sin2x = 1 
cosec x = 1/sin x 
(cot x)' = (cos x/sin x)' 
 
= [(cos x)' sin x - (sin x)' cos x]/sin2x 
 
= [-sin x. sin x - cos x. cos x]/sin2x 
 
= (-sin2x - cos2x)/sin2x 
 
= -1/sin2x 
 
= -cosec2x 
 
Therefore, d(cot x)/dx = -cosec2x  | 
                     
                             
                             
    
    
            Derivative of cosec x
        
                        
                                    
                        We will determine the derivative of cosec x using the chain rule. We will use the following formulas and identities to calculate the derivative: 
 
cosec x = 1/sin x 
cot x = cos x/sin x 
(sin x)' = cos x 
(cosec x)' = (1/sin x)' = (-1/sin2x).(sin x)' 
 
= (-1/sin2x).(cos x) 
 
= -cos x/sin2x 
 
= -(cos x/sin x).(1/sin x) 
 
= -cot x cosec x 
 
Therefore, d(cosec x)/dx = -cot x cosec x  | 
                     
                             
                             
                             |